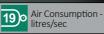


Adjustable Anti Wind-up



POWERED TORQUE TOOLS

Adjustable Reaction

TORQUE MEASUREMENT INSTRUMENTS

Multi Transducers

HARSH ENVIRONMENT INSTRUMENTS

Multi Transducers

ULTRASONIC MEASUREMENT

Back-up Data

CUSTOMER RELATIONS

CONTACT DETAILS

New Sales

Direct Tel +44 (0)1295 753600 Email sales@norbar.com

After Sales Service Tel +44 (0)1295 753635 Email service@norbar.com

Norbar Torque Tools Ltd Wildmere Road, Banbury Oxfordshire, OX16 3JU UNITED KINGDOM

DRILCO

Avenida de Somosierra, 22E - 6 y 7 E-28703 S.S. de los Reyes (Madrid) Tel. +34 916 591 900 · www.drilco.net

NORBAR SOCIAL MEDIA

Norbar Torque Tools Ltd

Norbar Torque Tools

@voiceoftorque

Norbar Torque Tools Ltd

Welcome to NORBAR

John Reynertson

Managing Director

Norbar Torque Tools

From our humble beginnings over 80 years ago in a small workshop in North Bar, to our latest purpose-built factory on Wildmere Road, Norbar has pioneered many of today's solutions for torque control. Our offices around the world are excellent at taking core Banbury product and developing it for your use in your application. From manual torque wrenches to sophisticated control systems, we are still dedicated to being the best at what we do.

Norbar is now a member of the Snap-on Incorporated family of companies and is proud to be part of a business which has beliefs, values and a vision closely aligned with those that Norbar was founded on. We still strive to be "The best torque tool company in the world. Respected, profitable and a great place to work."

We have extended our product range this year by the addition of FASTORQ products and Sturtevant Richmont industrial tools to our group of highly respected professional brands. These companies expand our reach into connected manufacturing and bespoke engineered to order torque and tensioning products, enhancing our market leadership in these exciting, growing areas.

FASTORQ is a preferred global provider of precision bolt loading and removal solutions. FASTORQ is a pioneer of the hydraulic tools industry and today designs, manufactures and sells an innovative line of bolting solutions including a complete line of hydraulic, electric and pneumatic tools, as well as design resources to customise existing tools or create one-of-a-kind bolting solutions.

From torque wrenches to torque screwdrivers, interchangeable heads for torque wrenches and the first torque analyzers and calibration instruments, Paul Sturtevant and Frank Livermont led the way. Sturtevant Richmont continues to shape the industry with game-changing innovation including the development of radio-equipped torque hand tools that connect to a process monitor.

GLOBAL SERVICE

United Kingdom +44 (0)1295 753600 sales@norbar.com

Australia +61 (0)8 8292 9777 norbar@norbar.com.au

USA +1 866 667 2272 inquiry@norbar.us

NVLAP Lab Code 200596-0

China +86 21 6145 0368 sales@norbar.com.cn

India +91 22 2778 8480 enquiry@norbar.in

FASTORQ +1 281 449 6466 esales@fastorg.com

Sturtevant Richmont +1 800 877 1347 customerservice@srtorque.com

POWERED TORQUE TOOLS

EvoTorque®2 Pneumatic Torque Tools PneuTorque® PTS™ Serie PneuTorque® PTS™ Reme ET, ET2, PTS™ and PTM N PneuTorque® Standard S Torque Reaction PTS™ and PTM Dual Trigg Secondary Handle Right Angle Gearbox Mo Lubro Control Units Socket Retainers Electronic Tools EvoTorque® are electronic fasteners. The unique 'Int to the correct torque with common in other electric Pneumatic Tools PneuTorques consist of a more stages of epicyclic ge	## description of the control of the	

The EvoTorque® Battery Tool (EBT) features a new brushless motor, data memory and data transfer capabilities. Norbar has combined this with our respected gearboxes to deliver a range of fast, reliable, accurate torque tools that retain key features from our EvoTorque® 2 range (see page 51).

Fast: EBT uses a powerful motor coupled with either a single speed or auto two speed gearbox for rapid joint completion times.

Durable: The industrial motor used by the EBT gives long life with minimal motor service requirement.

Accurate: EBT is a transducer-controlled battery powered torque tool designed for accurately applying torque to threaded fasteners. The unique 'intelligent joint sensing' technology continually measures the joint during tightening and when necessary, employs dynamic braking to avoid torque over-shoot due to motor inertia. Both accuracy and repeatability of ±3% of the setting within the calibrated range.

- Tool is not constrained by power cable or hose, improving safety, convenience and versatility
- 18V, 5.0Ah battery and efficient motor give outstanding fastening performance per charge
- 'Safe to start' button ensures hands are safely positioned at start up

Note: In some circumstances it can be difficult to support and operate the tool while simultaneously pressing the trigger and 'safe to start' button. For this reason, single trigger models are also available.

- OLED display ensures visibility in all conditions
- High powered LED to illuminate application
- Optional 'Ease of Use' functionality when in 'Torque Only' mode, minimising operator error
- Optional 'Relax Mode' feature automatically reverses tool following joint completion until
 the tool becomes free or the trigger is released, minimising the chance of fastener and
 reaction 'locking' in place
- Supplied with a traceable calibration certificate for torque and angle as standard. Calibrated ranges shown in the table on page 50, clockwise only
- Available in single speed ideal for torque with angle control
- Auto two speed configurations available for rapid joint completion
- Torque, Torque & Angle and Torque Audit modes available
- In Torque & Angle Mode and Audit Mode, torque can be set from a lower percentage of tool maximum on single speed tools compared to their auto two speed equivalents. Single speed tools are therefore recommended for angle operation
- Software can be updated remotely, without the need to return the product to Norbar
- Quiet: Noise level: 79.1dB(A), with an uncertainty K = 3dB, when free-running
- $\bullet~$ Vibration : Does not exceed 2.5m/s $^2~$ (highest measured under test : 0.9m/s $^2)$

EBT-800 Series

EBT-1350 Series

EBT-2000 Series

EBT-2700 Series

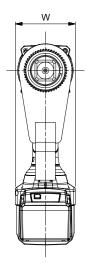
EBT-4000 Series

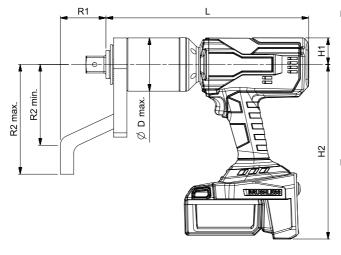
EVOTORQUE® BATTERY TOOL (EBT)

180565 180661

13	EBT SERIES - SINGLE SPEED - 'SAFE TO START' MODELS
180349	³ / ₄ " sq. dr., 160 - 800 N·m, 118 - 600 lbf·ft, Kit
180445 ⁺	1" sq. dr., 200 - 1,350 N·m, 150 - 1,000 lbf·ft, Kit
180493	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft, Kit
180541	1" sq. dr., 400 - 2,700 N·m, 295 - 2,000 lbf·ft, Kit
180637	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft, Kit
13	EBT SERIES - AUTO TWO SPEED - 'SAFE TO START' MODELS
180469 ⁺	1" sq. dr., 338 - 1,350 N·m, 250 - 1,000 lbf·ft, Kit

1" sq. dr., 676 - 2,700 N·m, 499 - 2,000 lbf·ft, ${f Kit}$


1" sq. dr., 1,000 - 4,000 N·m, 738 - 2,950 lbf·ft, Kit


†1,350 N·m models come supplied with both	¾" and 1" sq. dr.
---	-------------------

13	EBT SERIES - SINGLE SPEED - SINGLE TRIGGER MODELS
180850	³¼" sq. dr., 160 - 800 N·m, 118 - 600 lbf·ft, Kit
180898 ⁺	1" sq. dr., 200 - 1,350 N·m, 150 - 1,000 lbf·ft, Kit
181305	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft, Kit
180946	1" sq. dr., 400 - 2,700 N·m, 295 - 2,000 lbf·ft, Kit
180994	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft, Kit
13	EBT SERIES - AUTO TWO SPEED -

13	EBT SERIES - AUTO TWO SPEED - SINGLE TRIGGER MODELS
180922+	1" sq. dr., 338 - 1,350 N·m, 250 - 1,000 lbf·ft, Kit
180970	1" sq. dr., 676 - 2,700 N·m, 499 - 2,000 lbf·ft, Kit
181018	1" sq. dr., 1,000 - 4,000 N·m, 738 - 2,950 lbf·ft, Kit

Model		EBT-800	EBT-1350	EBT-1350 Auto Two Speed	EBT-2000	EBT-2700	EBT-2700 Auto Two Speed	EBT-4000	EBT-4000 Auto Two Speed
Part Number		180349 180350 180850 180851	180445 180446 180898 180899	180469 180470 180922 180923	180493 180494 181305 181306	180541 180542 180946 180947	180565 180566 180970 180971	180637 180638 180994 180995	180661 180662 181018 181019
Operating Rang	ge (N·m)	100 - 800	120 - 1,350	338 - 1,350	200 - 2,000	270 - 2,700	676 - 2,700	400 - 4,000	1,000 - 4,000
Calibrated Ran	ge (N·m)	160 - 800	200 - 1,350	338 - 1,350	400 - 2,000	400 - 2,700	676 - 2,700	800 - 4,000	1,000 - 4,000
Output Speed	(rpm)	11.2	6.5	32	4.2	3.3	13	2.3	9.5
	ØD max.	52	72	72	68	80	80	92	92
	H1	40	40	40	40	40	40	40	40
mm)	H2	262	262	262	262	262	262	262	262
Dimensions (mm)	L	271	298	317	294	298	333	352	387
ensic	R1	59	76	76	75	76	76	70	70
Dim	R2 min.	68	124	124	133	124	124	125	125
	R2 max.	131	167	167	165	167	167	175	175
	W	90	90	90	90	90	90	90	90
Tool Weight (kg	g)*	3.7	5.7	5.9	4.9	5.9	6.8	7.9	8.3
Reaction Weight (kg)		0.8	1.4	1.4	1.1	1.4	1.4	2.5	2.5

NOTE: Kit versions come with tool, 2 batteries, charger and a secondary handle in a carry case. 800 N·m tools do not come with a secondary handle.

> Bare tools are also available, please visit www.norbar.com for more information.

Bare tools are supplied in a cardboard box without batteries, charger and secondary handle. Other tool variations are available, please contact Norbar for details.

NOTE: When the tool is to be used for untightening bolts; Norbar recommends the selection of single speed versions. In the case of prevailing torque lock-nuts or partially tightening bolts, the Auto Two Speed version of the tools will generally give no advantage and single speed tools should be selected.

Tool ranges shown above are calibrated ranges, see table above line drawing for operating ranges.

8	EBT SERIES - ACCESSORIES	
266148	EBT Plastic Case with Inserts	
60334.EBT	EBT Battery Pack	
60335.KIT	EBT Battery Charger	

^{*} Tool weight excludes both reaction and battery. The battery weighs 0.8 kg.

The EvoTorque®2 is an electronic torque tool designed to accurately apply torque to threaded fasteners. Tools are factory calibrated to ±3% of reading. The unique 'intelligent joint sensing' technology continually measures the joint during tightening and when necessary, employs dynamic braking to avoid torque over-shoot due to motor inertia. Consequently, EvoTorque®2 can apply torque accurately over a wide range of joint rates from hard (high torque rate) through to soft (low torque rate). All EvoTorque®2 tools are highly tolerant of supply voltage and frequency variation. If the supply voltage is outside of tolerance then, as a safety feature, the tool will be prevented from starting.

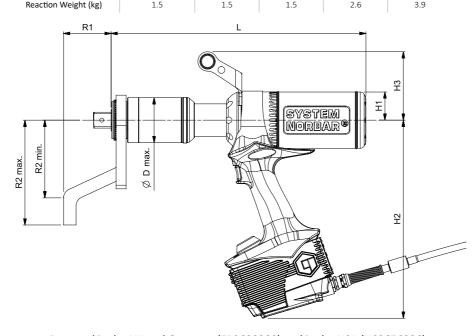
The EvoTorque®2 has the ability to memorise multiple targets, work IDs, user IDs and readings. A work sequence (flow) can be performed on the EvoTorque®2, taking the user through a pre-defined tightening sequence. The tool has four modes of operation: Torque, Torque & Angle, Torque & Angle with Final Torque and Torque Audit. The unique Audit Mode is a sophisticated feature for testing pre-tightened bolts with minimal impact on the original fastening torque and can provide quality control data for monitoring joint performance over time. With accuracy and repeatability of ±3% of the setting, EvoTorque®2 offers many features including:

- Multiple units of torque measurement, N·m, lbf·ft, ft·lb and kgf·m
- Calibrated from 20% to 100% of tool range
- Torque, Torque & Angle and Torque Audit modes available
- Display and on-board storage of final torque or torque and angle values
- Memory capacity for 3,000 readings, time and date stamped
- USB and Bluetooth® 4.0 data transfer (also called Bluetooth® Smart)
- Complementary PC software 'EvoLog' for data management and tool configuration
- 12 user IDs can be downloaded to the tool and results can be stored against individual users
- Results can be output in CSV (comma-separated values) format for users not able to use EvoLog
- 'Usage' counter gives the ability to see the amount of times the tool has been used since the last reset
- 'Turn Angle' option can be used to check if bolts have already been tightened in an assembly process
- Supplied with a traceable calibration certificate for torque and angle as standard. Calibrated from 20% to 100% of tools maximum torque capacity, clockwise only

ET2-119 (7000)

ET2-92 (4000)

EVOTORQUE®2



11	EVOTORQUE 2 - 110 V
180230.B06	ET2-72-1000-110, ¾" sq. dr., 200 - 1,000 N·m
180231.B06	ET2-72-1350-110, ¾" sq. dr., 270 - 1,350 N·m
180232.B08	ET2-72-2000-110, 1" sq. dr., 400 - 2,000 N·m
180239.B08	ET2-80-2700-110, 1" sq. dr., 540 - 2,700 N·m
180238.B08	ET2-92-4000-110, 1" sq. dr., 800 - 4,000 N·m
180236.B12	ET2-119-7000-110, 1½" sq. dr., 1,400 - 7,000 N·m

11	EVOTORQUE 2 - 230 V
180220.B06	ET2-72-1000-230, ¾" sq. dr., 200 - 1,000 N·m
180221.B06	ET2-72-1350-230, ¾" sq. dr., 270 - 1,350 N·m
180222.B08	ET2-72-2000-230, 1" sq. dr., 400 - 2,000 N·m
180229.B08	ET2-80-2700-230, 1" sq. dr., 540 - 2,700 N·m
180228.B08	ET2-92-4000-230, 1" sq. dr., 800 - 4,000 N·m
180226.B12	ET2-119-7000-230, 1½" sq. dr., 1,400 - 7,000 N·m

Model		ET2-72-1000 ET2-72-1350	ET2-72-2000	ET2-80-2700	ET2-92-4000	ET2-119-7000
Part Number		180230.B06 180220.B06 180231.B06 180221.B06	180232.B08 180222.B08	180239.B08 180229.B08	180238.B08 180228.B08	180236.B12 180226.B12
Output Spee	ed (rpm)	21 (ET-72-1000) 17 (ET-72-1350)	11	10	6	3.3
	ØD max.	72	72	80	92	119
	H1	45	45	45	45	45
Dimensions (mm)	H2	317	317	317	317	317
	НЗ	109	109	109	109	109
ensic	L	366	407	363	417	440
Dime	R1	71	76	76	70	90
	R2 min.	124	124	124	125	162
	R2 max.	167	167	167	175	210
Tool Weight (kg)		10.4	10.8	10.8	12.9	16.8
Reaction Weight (kg)		1.5	1.5	1.5	2.6	3.9

Patented in the UK and Germany (EP2699389) and in the USA (US9676086).

PNEUMATIC TORQUE TOOLS

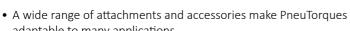
What is a PneuTorque® Pneumatic Torque Tool?

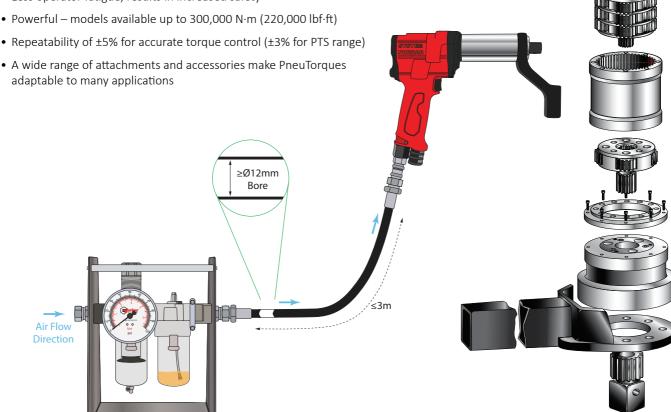
The PneuTorque® consists of a robust air motor driving a Norbar multiplier with three or more stages of epicyclic gearing.

Torque control is achieved through adjustment of the air pressure. An air pressure versus torque graph and a calibration certificate is supplied with each tool and allows specific torque values to be set. For more critical applications, PneuTorques can be fitted with a torque transducer and the precise torque output displayed. The tool can then be shut off at the desired torque either manually or automatically using suitable control circuitry.

METRIC CERTIFICATE OF CALIBRATION

Why use PneuTorque® Pneumatic Torque Tools?


Hand operated torque multipliers are ideal for low volume or intermittent use or when there is no power source available. However, for production lines or whenever a large number of bolts is involved, a powered multiplier will save a considerable amount of time.


PneuTorque® operation is quiet – less than 84 dB(A) with absolutely no impacting. These two factors make PneuTorques comfortable for the operator to use, reducing fatigue and consequently increasing safety.

PneuTorques provide accurate torque control – on a given joint they will stall repeatably to within ±5% (PTS tools, ±3%). Using electronic shut off, this repeatability can be improved to ±2%.

Summary of PneuTorque® Advantages:

- Sound pressure level does not exceed 84 dB(A) with an uncertainty K = 3dB
- No impacting means less damage to the tool, socket and bolted assembly
- Less operator fatigue, results in increased safety
- Powerful models available up to 300,000 N·m (220,000 lbf·ft)

PNEUMATIC TORQUE TOOLS

PneuTorque® Applications

The smooth and continuous torque output of the PneuTorque® makes these tools suitable for a wide range of bolting and non-bolting applications.

Bolting

PneuTorques are ideally suited to tightening and untightening bolts of up to 150 mm diameter. The following is just a small selection of applications:

- Wheel nuts on trucks, buses and large machinery
- Structural steelwork
- High pressure joints e.g. Pipelines, boiler feed pumps and pressure vessels
- Engine head bolts
- Injector heads on plastic injection moulding machines
- Heat exchangers
- Heavy vehicle production eg. chassis and suspension bolts

Non-bolting

Whenever a high continuous torque is needed, PneuTorques can be used as the power source. Typical applications include:

- Valve Actuation and valve grinding
- Powering wagons and gantries
- Barring of large diesel engines (turning the crankshaft) during build
- Weld testing by applying test torques
- Roller adjustment in steel mills and paper mills
- Valving of gas bottles

The PTS™ is the result of an extensive design project to produce an efficient air motor in an accurate torque tool. The air motor is then married to Norbar's respected gearbox range, sharing common torque reaction accessories with PTM, EvoTorque® 2 and EBT.

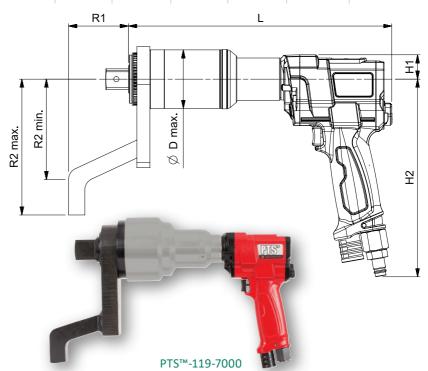
- Pistol grip handle for operator comfort
- Designed to offer excellent power-to-weight ratio
- Easily accessible switch for forward and reverse operation
- $\pm 3\%$ repeatability of reading from 20% to 100% of range
- Air coupling designed for safety and rapid operation
- Quiet operation The sound pressure level is 77 dB(A) [the PTS[™] 4000 is 79 dB(A)]. Uncertainty K = 3 dB
- Directional exhaust barrel directs exhaust away from operator
- Replaceable square drive
- Fast operation for rapid bolt rundown.
- Non-impacting exceptionally low vibration levels (0.343 m/s²), make these tools comfortable and safe for operator use
- Steel reactions supplied as standard. Bespoke reactions available upon request

When the tool is to be used for untightening bolts, Norbar recommends the selection of single speed versions. In the case of prevailing torque lock-nuts or partially tightening bolts, the Auto Two Speed version of the tools will generally give no advantage and single speed tools should be selected.

11	PTS SERIES - STALL TOOLS - BI-DIRECTIONAL - SINGLE SPEED
180241.B06	¾" sq. dr., 100 - 500 N·m, 74 - 370 lbf·ft
180242.B06	³¼" sq. dr., 160 - 800 N·m, 118 - 590 lbf·ft
180243.B06	¾" sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180244.B08	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
181454	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft
180246.B08	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180250.B08	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180249.B12	1½" sq. dr., 1,400 - 7,000 N·m, 1,030 - 5,200 lbf·ft

11	PTS SERIES - STALL TOOLS - BI-DIRECTIONAL - AUTO TWO SPEED
180781	¾" sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180782	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
180784	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180785	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180788	1½" sq. dr., 1,400 - 7,000 N·m, 1,030 - 5,200 lbf·ft

PNEUTORQUE® PTS™ SERIES

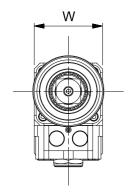


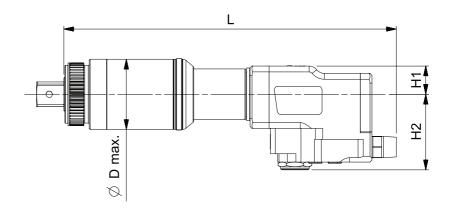
Mode	el	PTS-52-500 PTS-52-800	PTS-72-1000 PTS-72-1350	PTS-72-1000 Auto Two Speed PTS-72-1350 Auto Two Speed	PTS-68-2000	PTS-80-2700	PTS-80-2700 Auto Two Speed	PTS-92-4000	PTS-92-4000 Auto Two Speed	PTS-119-7000	PTS-119-7000 Auto Two Speed
Part N	Number	180241.B06 180242.B06	180243.B06 180244.B08	180781 180782	181454	180246.B08	180784	180250.B08	180785	180249.B12	180788
Outpo (rpm)	ut Speed	35.5 (PTS-52-500) 25.7 (PTS-52-800)	20.4 (PTS-72-1000) 14.7 (PTS-72-1350)	100 (PTS-72-1000) 75 (PTS-72-1350)	9.2	7.3	30	5.3	22	2.6	13
	ØD max.	52	72	72	68	80	80	92	92	119	119
ر	H1	30	30	30	30	30	30	30	30	30	30
uw)	H2	243	243	243	243	243	243	243	243	243	243
sions	L	264	292	310	285	291	327	343	374	369	369
Dimensions (mm)	R1	59	74	74	74	74	74	74	75	90	90
ō	R2 min.	71	124	124	120	124	124	125	125	162	162
	R2 max.	131	165	167	165	165	167	175	175	210	210
Tool \	Neight (kg)	4.2	6.2	6.28	5.35	6.2	7.45	8.59	8.89	12.5	12.80
React	ion ht (kg)	0.9	1.4	1.4	1.1	1.4	1.4	2.5	2.5	3.8	4.0

PNEUTORQUE® PTS™ REMOTE SERIES

11	PTS REMOTE SERIES
180271.B06	³¼" sq. dr., 100 - 500 N·m, 74 - 370 lbf·ft
180272.B06	³¼" sq. dr., 160 - 800 N·m, 118 - 590 lbf·ft
180273.B06	¾" sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180274.B08	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
181455	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft
180276.B08	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180295.B08	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180279.B12	1½" sq. dr., 1,400 - 7,000 N·m, 1,030 - 5,200 lbf·ft

Remote control versions have no direction control on the tool but rely on external pneumatic circuitry to provide this function. This opens up numerous application possibilities for the PneuTorque® ranging from simple stall shut-off in a hazardous working environment to sophisticated, multi-spindle torque and angle shut-off systems.


- Designed to offer excellent power-to-weight ratio
- $\pm 3\%$ repeatability of reading from 20% to 100% of range
- Replaceable square drive


NOTE: For full versatility, PTS™ Remotes are supplied without reaction see pages 63 - 66 for options or discuss bespoke engineered options with Norbar.

11	PTS REMOTE SERIES - AUTO TWO SPEED
180789	³ / ₄ " sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180790	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
180792	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180793	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180796	1½" sa. dr., 1.400 - 7.000 N·m, 1.030 - 5.200 lbf·ft

Model		PTS REMOTE 52-500	PTS REMOTE 52-800	PTS REMOTE 72-1000	PTS REMOTE 72-1350	PTS REMOTE 68-2000	PTS REMOTE 80-2700	PTS REMOTE 92-4000	PTS REMOTE 119-7000
Part Number		180271.B06	180272.B06	180273.B06	180274.B08	181455	180276.B08	180295.B08	180279.B12
Output Speed (r	pm)	27.8	20.1	16	11.5	7.2	5.7	4.1	2
	ØD max.	52	52	72	72	68	80	92	119
Dimensions (mm)	H1	29	29	29	29	29	29	29	29
	H2	78	78	78	78	78	78	78	78
	L	284	284	311	311	302	311	362	385
	W	70	70	70	70	70	70	70	70
Tool Weight (kg)		4.1	4.1	6.1	6.1	5.25	6.1	8.9	12.4

Model		PTS REMOTE 72-1000 Auto Two Speed	PTS REMOTE 72-1350 Auto Two Speed	PTS REMOTE 80-2700 Auto Two Speed	PTS REMOTE 92-4000 Auto Two Speed	PTS REMOTE 119-7000 Auto Two Speed
Part Number		180789	180790	180792	180793	180796
Output Speed (rpm)		78	56	22	20	10
Dimensions (mm)	ØD max.	72	72	80	92	119
	H1	29	29	29	29	29
	H2	78	78	78	78	78
	L	330	330	344	395	422
	W	70	70	70	70	70
Tool Weight (kg)	6.2	6.2	7.0	9.3	12.78

ET, ET2, PTS™ AND PTM NOSE EXTENSIONS

Special nose extension reaction devices are available for use in situations where the tool access is restricted. A typical application is the rear wheel nuts on heavy vehicles.

11	SPLINED NOSE EXTENSIONS FOR 72/92 SERIES 1" DRIVE
19285.006	ET2/EBT/PTS/PTM-72 6" long, 1" sq. dr.
19285.009	ET2/EBT/PTS/PTM-72 9" long, 1" sq. dr.
19285.012	ET2/EBT/PTS/PTM-72 12" long, 1" sq. dr.
19047.006	ET2/EBT/PTS/PTM-92 6" long, 1" sq. dr.
19047.009	ET2/EBT/PTS/PTM-92 9" long, 1" sq. dr.
19047.012	ET2/EBT/PTS/PTM-92 12" long, 1" sq. dr.

11	SPLINED NOSE EXTENSIONS FOR 52 SERIES
19045.006	6" long
19045.009	9" long
19045.012	12" long

11	SPLINED NOSE EXTENSIONS FOR 72 SERIES ¾" DRIVE
19046.006	6" long, ¾" sq. dr.
19046.009	9" long, ¾" sq. dr.
19046.012	12" long, ¾" sq. dr.

NOSE EXTENSIONS FOR 52 SERIES

18601.006	6" long, F/M ¾" sq. dr.	
18601.009	9" long, F/M ¾" sq. dr.	
18601.012	12" long, F/M ¾" sq. dr.	
F/M = Fema	le input square/Male output square	
11	NOSE EXTENSIONS FOR 72 SERIES	
19007.006	6" long, SPM/M 1" sq. dr.	
19007.009	9" long, SPM/M 1" sq. dr.	
19007.012	12" long, SPM/M 1" sq. dr.	
11	NOSE EXTENSIONS FOR 80 SERIES	
19480.009	9" long, SPM/M 1" sq. dr.	
19480.012	12" long, SPM/M 1" sq. dr.	
SPM/M = Spline Male input/Male output square		

The TrukTorque™ nose extension features a special curved reaction arm designed to handle bolt tightening on the front and rear wheels of trucks and buses. The design easily accommodates wheel trims and deeply recessed wheel bolts.

11	NOSE EXTENSIONS FOR TRUCK AND BUS WHEELS (Fits PTM-72)
19087.009	1,000 N·m, 9" long, ¾" sq. dr
19087.012	1,000 N·m, 12" long, ¾" sq. dr
19089.009	1,000 N·m, 9" long, 1" sq. dr
19089.012	1,000 N·m, 12" long, 1" sq. dr

From left to right PT 5 Remote, PT 5 Single Speed, PT 5 Automatic Two Speed and PT 5 Manual Two Speed

Based on the original PneuTorque®, the 'Standard Series' range is a direct result of over 50 years of refinement and development necessary to keep pace with the requirements of industry today.

In use in many thousands of applications worldwide PneuTorque® wrenches continue to represent the foundation of Norbar's powered tool range. Two speed models offer all the advantages of single speed versions but with the additional benefit of a run-down speed five times greater than the high torque speed setting.

- $\bullet\,$ Models available for almost every bolting and torque application, up to 300,000 N·m.
 - Models above 6,000 N·m are Manufactured to Order, for more information please contact Norbar
- Forward and reverse operation
- Quiet: Noise level: 81dB(A), with an uncertainty K = 3dB, when free running
- Vibration: Does not exceed 2.5m/s² (highest measured under test: 0.444m/s²)
- Stall control gives repeatability of ±5% on a given joint
- Other reaction styles can be designed to suit specific applications
- $\bullet\;$ Electronic torque transducers can be fitted for precise torque monitoring

11	TO 100,000 N·m - SINGLE SPEED
16031	PT 1 ¾" sq. dr., 160 - 680 N·m, 120 - 500 lbf·ft
16011	PT 1 1" sq. dr., 160 - 680 N·m, 120 - 500 lbf·ft
16098	PT 1A ¾" sq. dr., 270 - 1,200 N·m, 200 - 900 lbf·ft
16097	PT 1A 1" sq. dr., 270 - 1,200 N·m, 200 - 900 lbf·ft
16013	PT 2 1" sq. dr., 515 - 1,700 N·m, 380 - 1,250 lbf·ft
16015	PT 5 1" sq. dr., 880 - 3,400 N·m, 650 - 2,500 lbf·ft
16017	PT 6 1½" sq. dr., 880 - 3,400 N·m, 650 - 2,500 lbf·ft
16066	PT 7 1½" sq. dr., 1,762 - 6,000 N·m, 1,300 - 4,500 lbf·ft
16072	PT 9 1½" sq. dr., 2,710 - 9,500 N·m, 2,000 - 7,000 lbf·ft
16046	PT 11 2½" sq. dr., 4,400 - 20,000 N·m, 3,250 - 14,700 lbf·ft
18086	PT 12 2½" sq. dr., 9,500 - 34,000 N·m, 7,000 - 25,000 lbf·ft
16052	PT 13 2½" sq. dr., 13,550 - 47,000 N·m, 10,000 - 35,000 lbf·ft
16045	PT 14 3½" sq. dr., 22,375 - 100,000 N·m, 16,500 - 73,500 lbf·ft

11	TO 9,500 N·m - AUTOMATIC TWO SPEED
16031.AUT	PT 1 ¾" sq. dr., Auto 2SP 160 - 680 N·m, 120 - 500 lbf·ft
16011.AUT	PT 1 1" sq. dr., Auto 2SP 160 - 680 N·m, 120 - 500 lbf·ft
16098.AUT	PT 1A ¾" sq. dr., Auto 2SP
	400 - 1,200 N·m, 295 - 900 lbf·ft
16097.AUT	PT 1A 1" sq. dr., Auto 2SP
	400 - 1,200 N·m, 295 - 900 lbf·ft
16013.AUT	PT 2 1" sq. dr., Auto 2SP
	700 - 1,700 N·m, 516 - 1,250 lbf·ft
16015.AUT	PT 5 1" sq. dr., Auto 2SP
	880 - 3,400 N·m, 650 - 2,500 lbf·ft
16017.AUT	PT 6 1½" sq. dr., Auto 2SP
	880 - 3,400 N·m, 650 - 2,500 lbf·ft
16066.AUT	PT 7 1½" sq. dr., Auto 2SP
	2,200 - 6,000 N·m, 1,622 - 4,500 lbf·ft
16072.AUT	PT 9 1½" sq. dr., Auto 2SP
	2,100 - 9,500 N·m, 2,286 - 7,000 lbf·ft

MTS = Manual Two Speed. Auto 2SP = Automatic Two Speed.

Angle Encoders are available for Standard Series PTs please contact Norbar for further details.

NB: PneuTorque $^{\rm 9}$ PT 11 - PT 18 are supplied with a Lubro Control Unit as standard equipment. PneuTorques PT 12, 13 and 14 are also supplied with a weld prepared reaction ring as standard. PT 13 and 14 are also supplied with a transporting trolley. PT 15 - 18 do not include output drive or reaction. These components will be engineered uniquely for each application. Remote PT part numbers are designated with an .X

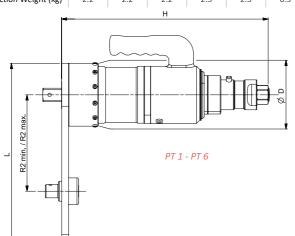
e.g. PT 1 Remote is 16031.X

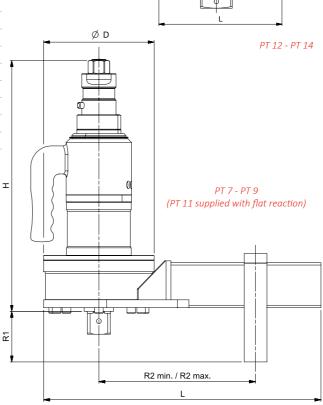
e.g. PT 1 Remote Auto is 16031.XAUT

For remote models, consult Norbar for prices.

11	TO 300,000 N·m - MANUAL TWO SPEED
16031.MTS	PT 1 ¾" sq. dr., MTS 160 - 680 N·m, 120 - 500 lbf·ft
16011.MTS	PT 1 1" sq. dr., MTS 160 - 680 N·m, 120 - 500 lbf·ft
16098.MTS	PT 1A ¾" sq. dr., MTS 270 - 1,200 N·m, 200 - 900 lbf·ft
16097.MTS	PT 1A 1" sq. dr., MTS 270 - 1,200 N·m, 200 - 900 lbf·ft
16013.MTS	PT 2 1" sq. dr., MTS 515 - 1,700 N·m, 380 - 1,250 lbf·ft
16015.MTS	PT 5 1" sq. dr., MTS 880 - 3,400 N·m, 650 - 2,500 lbf·ft
16017.MTS	PT 6 1½" sq. dr., MTS 880 - 3,400 N·m, 650 - 2,500 lbf·ft
16066.MTS	PT 7 1½" sq. dr., 1,762 - 6,000 N·m, 1,300 - 4,500 lbf·ft
16072.MTS	PT 9 1½" sq. dr., 2,710 - 9,500 N·m, 2,000 - 7,000 lbf·ft
16046.MTS	PT 11 2½" sq. dr., 4,400 - 20,000 N·m, 3,250 - 14,700 lbf·ft
18086.MTS	PT 12 2½" sq. dr., 9,500 - 34,000 N·m, 7,000 - 25,000 lbf·ft
16052.MTS	PT 13 2½" sq. dr. 13,550 - 47,000 N·m, 10,000 - 35,000 lbf·ft
16045.MTS	PT 14 3½" sq. dr. 22,375 - 100,000 N·m, 16,500 - 73,500 lbf·ft
18089.MTS	PT 15 MTS 40,000 - 150,000 N·m, 29,500 - 110,500 lbf·ft
18090.MTS	PT 16 MTS 55,000 - 200,000 N·m, 40,500 - 147,500 lbf·ft
18088.MTS	PT 17 MTS 70,000 - 250,000 N·m, 51,500 - 184,500 lbf·ft
16054.MTS	PT 18 MTS 85,000 - 300,000 N·m, 62,500 - 221,500 lbf·ft
16490	Lifting Bracket for Standard Series (up to PT7)

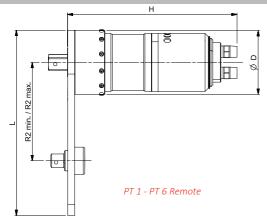
PneuTorque® Standard Series Manual Two Speed

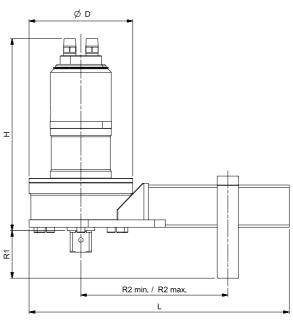

Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9	PT 11	PT 12	PT 13	PT 14	PT 15	PT 16	PT 17	PT 18
Part Number		16031.MTS 16011.MTS	16098.MTS 16097.MTS	16013.MTS	16015.MTS	16017.MTS	16066.MTS	16072.MTS	16046.MTS	18086.MTS	16052.MTS	16045.MTS	18089.MTS	18090.MTS	18088.MTS	16054.MTS
Output Speed (rpm)		150	75	45	25	25	12.5	9	6	2.5	1.5	1	0.5	0.4	0.35	0.3
	ØD	108	108	108	119	119	144	184	212	248	315	315	*	410	410	520
mm)	Н	436	436	436	479	481	509	504	581	622	664	729	*	866	939	936
ons (r	L	303	303	303	355	355	423	448	609	325	341	341	*	N/A	N/A	N/A
Dimensions (mm)	R1	N/A	N/A	N/A	N/A	N/A	84	84	N/A							
Dime	R2 min.	83	83	83	86	86	150	175	320	N/A						
	R2 max.	216	216	216	263	263	331	351	500	N/A						
Tool Weigh	it (kg)	14.1	14.6	14.6	17.5	17.5	23.2	27.9	42.1	53.3	105.7	122.9	*	270.0	285.0	380.0
Reaction W	Reaction Weight (kg)		2.2	2.2	2.5	2.5	6.3	8.3	13.3	6.5	6.9	10.4	N/A	N/A	N/A	N/A
				,					,					ďρ		


PneuTorque® Standard Series Single Speed

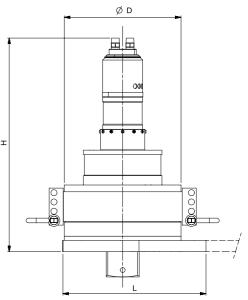
Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9	PT 11	PT 12	PT 13	PT 14
Part Numb	er	16031 16011	16098 16097	16013	16015	16017	16066	16072	16046	18086	16052	16045
Output Spe	ed (rpm)	30	15	9	5	5	2.5	1.8	1.2	0.5	0.3	0.2
	ØD	108	108	108	119	119	144	184	212	248	315	315
mm)	Н	350	350	350	393	395	423	418	495	536	578	643
ns (r	L	303	303	303	355	355	423	448	609	325	341	341
Dimensions (mm)	R1	N/A	N/A	N/A	N/A	N/A	84	84	N/A	N/A	N/A	N/A
Dime	R2 min.	83	83	83	86	86	150	175	320	N/A	N/A	N/A
	R2 max.	216	216	216	263	263	331	351	500	N/A	N/A	N/A
Tool Weigh	t (kg)	10.6	11.1	11.1	14.0	14.0	19.7	24.4	38.6	49.8	102.2	119.4
Reaction W	eight (kg)	2.2	2.2	2.2	2.5	2.5	6.3	8.3	13.3	6.5	6.9	10.4

PneuTorque® Standard Series Automatic Two Speed


	10.0					P		
Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9
Part Number		16031.AUT 16011.AUT	16098.AUT 16097.AUT	16013.AUT	16015.AUT	16017.AUT	16066.AUT	16072.AUT
Output Speed (rpm)		150	75	45	25	25	12.5	9
	ØD	108	108	108	119	119	144	184
mu)	Н	419	419	419	462	464	492	487
ı) suc	L	303	303	303	355	355	423	448
Dimensions (mm)	R1	N/A	N/A	N/A	N/A	N/A	84	84
Dim	R2 min.	83	83	83	86	86	150	175
	R2 max.	216	216	216	263	263	331	351
Tool Weight (kg)		14.1	14.6	14.6	17.5	17.5	23.2	27.9
Reaction W	/eight (kg)	2.2	2.2	2.2	2.5	2.5	6.3	8.3



PneuTorque® Standard Series Automatic Two Speed - Remote


Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9
Part Number		16031.XAUT 16011.XAUT	16098.XAUT 16097.XAUT	16013.XAUT	16015.XAUT	16017.XAUT	16066.XAUT	16072.XAUT
Output Speed (rpm)		150	75	45	25	25	12.5	9
	ØD	108	108	108	119	119	144	184
(ш н		339	339	339	382	383	412	407
ı) suc	L	303	303	303	355	355	423	448
Dimensions (mm)	R1	N/A	N/A	N/A	N/A	N/A	84	84
Dim	R2 min.	83	83	83	86	86	150	175
R2 max.		216	216	216	263	263	331	351
Tool Weight (kg)		14.1	14.6	14.6	17.5	17.5	23.2	27.9
Reaction Weight (kg)		2.2	2.2	2.2	2.5	2.5	6.3	8.3

PT 7 - PT 9 Remote (PT 11 Remote supplied with flat reaction)

PneuTorque® Standard Series Single Speed - Remote

Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9	PT 11	PT 12	PT 13	PT 14	
Part Number	er	16031.X 16011.X	16098.X 16097.X	16013.X	16015.X	16017.X	16066.X	16072.X	16046.X	18086.X	16052.X	16045.X	
Output Spe	ed (rpm)	30	15	9	5	5	2.5	1.8	1.2	0.5	0.3	0.2	
	ØD	108	108	108	119	119	144	184	212	248	315	315	
mm)	Н	270	270	270	313	314	343	340	415	456	490	563	
Dimensions (mm)	L	303	303	303	355	355	423	448	609	325	341	341	
ensic	R1	N/A	N/A	N/A	N/A	N/A	84	84	N/A	N/A	N/A	N/A	
Dim	R2 min.	83	83	83	86	86	150	175	320	N/A	N/A	N/A	
	R2 max.	216	216	216	263	263	331	351	500	N/A	N/A	N/A	
Tool Weight	t (kg)	10.6	11.1	11.1	14.0	14.0	17.9	24.4	38.6	49.8	102.2	119.4	
Reaction W	eight (kg)	2.2	2.2	2.2	2.5	2.5	6.3	8.3	13.3	6.5	6.9	10.4	

PT 12 - PT 14 Remote

PneuTorque® Standard Series Manual Two Speed - Remote

Model		PT 1	PT 1A	PT 2	PT 5	PT 6	PT 7	PT 9	PT 11	PT 12	PT 13	PT 14	PT 15	PT 16	PT 17	PT 18
Part Numb	er		16098.XMTS 16097.XMTS		16015.XMTS	16017.XMTS	16066.XMTS	16072.XMTS	16046.XMTS	18086.XMTS	16052.XMTS	16045.XMTS	18089.XMTS	18090.XMTS	18088.XMTS	16054.XMT
Output Spe	eed (rpm)	150	75	45	25	25	12.5	9	6	2.5	1.5	1	0.5	0.4	0.35	0.3
	ØD	108	108	108	119	119	144	184	212	248	315	315	*	410	410	520
(mm)	Н	356	356	356	399	400	429	425	501	542	576	649	*	786	859	856
ns (r	L	303	303	303	355	355	423	448	609	325	341	341	*	N/A	N/A	N/A
Dimensions	R1	N/A	N/A	N/A	N/A	N/A	84	84	N/A	N/A						
Dime	R2 min.	83	83	83	86	86	150	175	320	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	R2 max.	216	216	216	263	263	331	351	500	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tool Weigh	t (kg)	14.1	14.6	14.6	17.5	17.5	23.2	27.9	42.1	53.3	105.7	122.9	*	270.0	285.0	380.0
Reaction W	/eight (kg)	2.2	2.2	2.2	2.5	2.5	6.3	8.3	13.3	6.5	6.9	10.4	N/A	N/A	N/A	N/A

^{*} Available on request

62

This page applies to both HandTorque® multipliers and powered torque tools

Principles of Torque Reaction

Newton's law dictates that for every applied force there is an equal and opposite reactive force. For applications requiring relatively low torques that can be applied with a torque wrench, this does not present a problem as the reactive force is absorbed by the operator. However, if the desired torque necessitates the use of a multiplier, the resultant reactive force can only be absorbed using an appropriate reaction device.

For this reason all Norbar multipliers are supplied with a reaction plate or reaction foot fitted as standard.

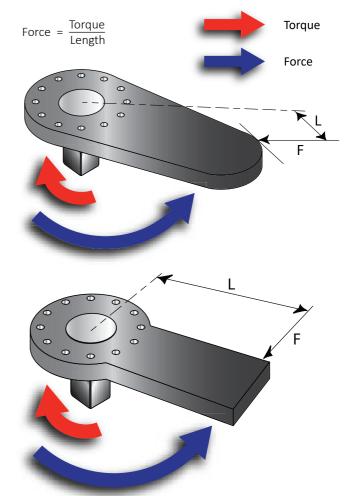
All of the standard reaction plates and feet supplied with standard Norbar tools have been designed to enable the multiplier's use in a variety of environments. However, due to an infinite number of bolting arrangements, it is impossible to have one reaction device that will satisfy every customer's requirement. See pages 65 to 66 for when the supplied standard reaction is not suitable.

In the above example, 1,000 N·m torque output will result in a reactive force of 6,667 N at a point 0.15 m from the axis of rotation or 2,000 N at 0.5 m.

Avoiding Torque Reaction Problems

It has already been mentioned that the reaction force is equal to the force being applied. However, the magnitude of the reaction force is dependent upon the perpendicular distance between the point of reaction and the centre line of the multiplier, i.e. the greater the distance the lower the force.

For this reason the point of reaction should be kept as far away from the centre line of the gearbox as is practical.


Customers using or modifying reaction plates for Standard Series multipliers up to a capacity of 3,400 N·m should note that if the reaction is taken on the radiused part, the reaction force is perpendicular to the tangent of the curve. Consequently, the further around the radius the reaction is taken, the smaller the perpendicular distance and therefore the greater the force.

Although a longer reaction plate may mean lower forces, the bending moment close to the multiplier will increase.

Customers extending the length of Norbar's standard reaction plates should be aware that an increase in overall length will result in a larger induced bending stress and should not assume that because the reaction plate is strong enough at one length it will remain so when extended.

Excessive side loading, resulting from poor reaction, increases frictional forces inside the multiplier. This can lead to lower multiplication ratios (outside $\pm 4\%$).

The ideal reaction arrangement has the centre of the reaction bar and the centre of the nut on a perpendicular line to the centre line of the tool.

This page applies to both HandTorque® multipliers and powered torque tools

Signs of poor reaction are evident on this damaged foot. Reaction was taken at the wrong point on the foot and burring indicates that the foot was slipping off the reaction point.

Points to remember

- Take the reaction as far away from the multiplier as practical
- Ensure that the reaction point remains square to the multiplier wherever possible as this will minimise any additional stress in the output square, which could result in premature failure. If the multiplier tilts under load, the reaction may not be square
- For applications that do not allow the reaction to be taken securely it is advisable to use a double-sided or balanced reaction plate

Reaction Force

When using multipliers and PneuTorques the reaction point must be capable of withstanding the reaction force. Therefore, great care must be exercised where the reaction is taken when applying high torques to study and bolts.

By using the following formula you can calculate the force at the point of reaction. The greater the distance the lower the force.

D = Stud Diameter

Formula to calculate Area of Stud = $\frac{\pi \times D^2}{4}$

Formula to calculate shear force: Shear Force = $\frac{\text{Reaction Force}}{\text{Area of Stud}}$

What to do if the standard reaction device is not suitable

For those applications that do not permit the use of a standard reaction plate the customer has three options.

- Norbar or an authorised Norbar distributor will design and manufacture a special purpose reaction plate to the customer's requirements
- The customer can modify the standard reaction plate to suit their requirements
- The customer can fabricate their own reaction device after liaison with Norbar's technical department or a Norbar distributor

Customers wishing to either modify the original reaction plate or fabricate their own device should read the above information on how to avoid common torque reaction problems.

A variety of reaction plates, manufactured in Steel or Aluminium for HandTorque®, EvoTorque®, EvoTorque® Battery Tool and PneuTorque®. Norbar also offer a range of specific reactions for the Wind Energy Generation Industry.

11	REACTION FOR HT/PTS/PTM-52 SERIES
18646	Steel Cranked Reaction for 52 mm
11	REACTION FOR ET/EBT/PTS/PTM-68 SERIES

11	SPLINED REACTION FOR HT/ET/	EBT/PTS/PTM-72 & 80 SERIES			
19289	Steel Cranked Reaction for 72 mm and 80 mm		18494	Aluminium Cranked Reaction for 72 mm and 80 mm	
11	SPLINED REACTION FOR HT/ET	/EBT/PTS/PTM-92 SERIES			
19291	Steel Cranked Reaction for 92 mm		18936	Aluminium Cranked Reaction for 92 mm	
11	SPLINED REACTION FOR HT/ET	/EBT/PTS/PTM-119 SERIES			
19293	Steel Cranked Reaction for 119 mm (Max. 7,000 N·m)		18961	Aluminium Cranked Reaction for 119 mm (Max. 6,000 N·m)	
	R1 ▼				
			11		R HT/ET/EBT/PTS/PTM-92 SERIES
			78028	Steel Cranked Reaction for 92 m	m
			11	SPECIAL SPLINED REACTION FO	R HT/ET/EBT/PTS/PTM-119 SERIES
	A A	_ 	70027	61 16 1 18 11 6 440	

	R1
A A	
R2 max. R2 min.	

Part Number	R1	R2 min	R2 max		
18646	59 mm	71 mm	131 mm		
19289	76 mm	124 mm	167 mm		
18494	68 mm	91 mm	165 mm		
19291	70 mm	125 mm	175 mm		
18936	87 mm	115 mm	205 mm		
19293	90 mm	162 mm	210 mm		
18961	118 mm	150 mm	199 mm		

11	SPECIAL SPLINED REACTION FOR HT/ET/EBT/PTS/PTM-92 SERIES
78028	Steel Cranked Reaction for 92 mm
44	COPECIAL COLUMN DE ACTION FOR LITIET/ERT/DTC/PTA 440 CERTEC
11	SPECIAL SPLINED REACTION FOR HT/ET/EBT/PTS/PTM-119 SERIES
78027	Steel Cranked Reaction for 119 mm

11	SPECIAL SPLINED REACTION FOR API FLANGES
78029	HT/ET/EBT/PTS/PTM-72 & 80 Series Steel Crowfoot Reaction for $1\frac{1}{4}$ " – $1\frac{1}{2}$ " (M30 – M39) nuts/bolts
78028	HT/ET/EBT/PTS/PTM-92 Series Steel Cranked Reaction (see image above) for $1\%" - 1\%" (M42 - M48)$ nuts/bolts
78030	HT/ET/EBT/PTS/PTM-119 Series Steel Crowfoot Reaction for 2" – 2½"(M52 – M64) nuts/bolts

Part Number	R1	R2 min	R2 max
78027	90 mm	148 mm	248 mm
78028	70 mm	57 mm	145 mm
78029	76 mm	45 mm	115 mm
78030	110 mm	70 mm	156 mm

A variety of steel reaction plates and adaptors, together with ancillary feet, blades and heads to aid their use are available for HandTorque®, EvoTorque® Battery Tool and PneuTorque®.

Q4714 Pegged Reaction Plate for rail

11	FOR HT/PTS/PTM-52 SERIES
18590	Double-Sided Reaction Plate
18576	Straight Reaction Plate
62236	Reaction Plate Spline Adaptor
11	FOR ET/EBT/PTS/PTM-68 SERIES
19783	Double-Sided Reaction Plate
11	FOR HT/ET/EBT/PTS/PTM-72 & 80 SERIES
18293	Double-Sided Reaction Plate
18292	Straight Reaction Plate
11	FOR ET/EBT/PTS/PTM-92 SERIES
18979	Straight Reaction Plate
18980	Double-Sided Straight Reaction Plate

11	FOR ET/EBT/PTM-119 SERIES	
16687	Straight Reaction Plate	
18981	Double-Sided Straight Reaction	Plate
Double-Sic Reaction F	elded Plate (18293)	Straight Reaction Plate (18292)

11 LIGHT-WEIGHT REACTIONS

19214 ET/EBT/PT/PTS/PTM-72 API Class 4 Light-Weight Reaction

11	REACTION WELD RINGS
18694	For HT/PTS/PTM-52
19784	For ET/EBT/PTS/PTM-68
18695	For HT/ET/EBT/PTS/PTM-72 & 80
18696	For HT/ET/EBT/PTS/PTM-92
18697	For HT/ET/EBT/PTS/PTM-119

11	ANCILLARY ITEMS FOR USE WITH 18290 OR 18558
18558	Reaction Adaptor for HT/ET/EBT/PTS/PTM-52 Series
18290	Reaction Adaptor for HT/ET/EBT/PTS/PTM-72 Series
18298	Straight Reaction with Peg
18291	Straight Reaction
18241	Short Reaction Foot
18358	Sliding Reaction Blade (to be used with 18291)
18359	Sliding Reaction Spigot Head (to be used with 18291)

11	SLIDING REACTIONS	
180300.052.B06	52 mm diameter Sliding Reaction ¾" sq.	
19785.068.B06	68 mm diameter Sliding Reaction ¾" sq.	
19785.068.B08	68 mm diameter Sliding Reaction 1" sq.	
180300.072.B06	72 mm diameter Sliding Reaction ¾" sq.	
180300.072.B08	72 mm diameter Sliding Reaction 1" sq.	
180300.080.B08	80 mm diameter Sliding Reaction 1" sq.	
180300.092.B08	92 mm diameter Sliding Reaction 1" sq.	
180300.092.B12	92 mm diameter Sliding Reaction 1 ½" sq.	
180300.119.B12	119 mm diameter Sliding Reaction 1 ½" sq.	

11	FOR HT 60 / PT 4500 / PT 5500
16687	Single-Sided Straight Reaction Plate
18436	Sliding Spigot Reaction Plate
11	FOR ET/EBT/PTS/PTM-68 SERIES
19782	Single-Sided Straight Reaction Plate
11	FOR HT 30 / PT 2700
16686	Single-Sided Straight Reaction Plate

PTS™ AND PTM DUAL TRIGGER MODULE (DTM)

A secondary trigger for use with all PTS and PTM tools that easily attaches between the tool's air inlet port and hose. This requires the operator to use both hands to run the tool and so reduces the risk of hands getting trapped between the reaction bar and reaction point.

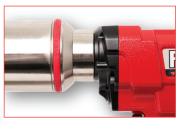
- Inlet 1/2" BSPP Female
- Outlet ½" BSPP Male

	PIS
•	

DUAL TRIGGER MODULE

19286 Dual Trigger Module for use with any PneuTorque

To order a pre-assembled tool add the suffix .DTM onto the end of the part number.


NOTE: When fitting a DTM the torque tool must be recalibrated with the DTM in place, contact Norbar for details.

SECONDARY HANDLE

The secondary handle is an easy to fit and versatile accessory which offers additional support and ease of handling when applying torque with Norbar's powered tools. The secondary handle is designed to fit directly to all new powered tools which have a handle location groove in the annulus which is covered by a red rubber band (see inset image to the right).

11	SECONDARY HANDLE
19363	For use with ET2/EBT/PTS/PTM 72, 92 & 119 Series
19448	For use with ET2/EBT/PTS/PTM 80 Series
Not suitable for use with ET2/EBT/PTS/PTM 52 and 68 Series	

RIGHT ANGLE GEARBOX MODULE

Right Angle Gearbox (180280)

RIGHT ANGLE GEARBOX

The Right Angle Gearbox Adaptor will provide most ET, EBT, PTS™ and PTM tools with a 90° angle of operation, enabling the benefits of Norbar's pneumatic and electric torque tools to be brought to a host of applications from which they are currently excluded due to space restrictions.

- The tool handle can rotate 360° in relation to the Right Angle Gearbox allowing the most comfortable and safest position to be found
- The Right Angle Gearbox can be purchased as a stand-alone product and retrofitted to existing Norbar tools by suitably qualified technicians. Norbar recommend tool recalibration after a Right Angle Gearbox has been fitted but where this is not possible, an efficiency of 97% can be assumed .

RIGHT ANGLE GEARBOX MODULE

To order a pre-assembled ET2 or PTS tool add the suffix .RA onto the end of the part number. Part numbers for a pre-assembled EBT can be found on page 50.

The EvoTorque®2 can also be supplied in a Peli Case pre-assembled to a Right Angle Gearbox at an additional charge. Please add .RAPEL onto the end of the EvoTorque®2 part number.

The EvoTorque®2 Right Angle Gearbox is supplied in a cardboard box as standard, if a sturdier case is required Norbar can provide a Peli Case at an additional charge. Please add .PEL on to the end of the part number when ordering.

NOTE:

Kit versions come with tool, 2 batteries, charger and a secondary handle in a carry case. Bare tools are supplied in a cardboard box without batteries, charger and secondary handle.

11	EVOTORQUE2 - 110 V - RIGHT ANGLE GEARBOX
180230.B06.RA	ET2-72-1000-110, 3/4" sq. dr., 200 - 1,000 N·m
180231.B06.RA	ET2-72-1350-110, ³ / ₄ " sq. dr., 270 - 1,350 N·m
180232.B08.RA	ET2-72-2000-110, 1" sq. dr., 400 - 2,000 N·m
180239.B08.RA	ET2-80-2700-110, 1" sq. dr., 540 - 2,700 N·m
180238.B08.RA	ET2-92-4000-110, 1" sq. dr., 800 - 4,000 N·m
180236.B12.RA	ET2-119-7000-110, 1 ¹ / ₂ " sq. dr., 1,400 - 7,000 N·m

Right Angle Gearbox fitted to PTS™

13	EBT SERIES - SINGLE SPEED - 'SAFE TO START' - RIGHT ANGLE GEARBOX
180353	³¼" sq. dr., 160 - 800 N·m, 118 - 600 lbf·ft, Kit
180449 ⁺	1" sq. dr., 200 - 1,350 N·m, 150 - 1,000 lbf·ft, Kit
180497*	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft, Kit
180545	1" sq. dr., 400 - 2,700 N·m, 295 - 2,000 lbf·ft, Kit
180641	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft, Kit

13	EBT SERIES - AUTO TWO SPEED - 'SAFE TO START' - RIGHT ANGLE GEARBOX
180473 ⁺	1" sq. dr., 338 - 1,350 N·m, 250 - 1,000 lbf·ft, Kit
180569	1" sq. dr., 676 - 2,700 N·m, 499 - 2,000 lbf·ft, Kit
180665	1" sq. dr., 1,000 - 4,000 N·m, 738 - 2,950 lbf·ft, Kit

Right Angle Gearbox fitted to EvoTorque®2

11	EVOTORQUE 2 - 230 V - RIGHT ANGLE GEARBOX
180220.B06.RA	ET2-72-1000-230, 3/4" sq. dr., 200 - 1,000 N·m
180221.B06.RA	ET2-72-1350-230, 3/4" sq. dr., 270 - 1,350 N·m
180222.B08.RA	ET2-72-2000-230, 1" sq. dr., 400 - 2,000 N·m
180229.B08.RA	ET2-80-2700-230, 1" sq. dr., 540 - 2,700 N·m
180228.B08.RA	ET2-92-4000-230, 1" sq. dr., 800 - 4,000 N·m
180226.B12.RA	ET2-119-7000-230, 1 ¹ / ₂ " sq. dr., 1,400 - 7,000 N·m

11	PTS SERIES - STALL TOOLS - BI-DIRECTIONAL - AUTO TWO SPEED - RIGHT ANGLE GEARBOX
180781.RA	³¼" sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180782.RA	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
180784.RA	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180785.RA	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180788.RA	1½" sq. dr., 1,400 - 7,000 N·m, 1,030 - 5,200 lbf·ft

11	PTS SERIES - STALL TOOLS - BI-DIRECTIONAL - SINGLE SPEED - RIGHT ANGLE GEARBOX
180241.B06.RA	³/₄" sq. dr., 100 - 500 N·m, 74 - 370 lbf·ft
180242.B06.RA	³/₄" sq. dr., 160 - 800 N·m, 118 - 590 lbf·ft
180243.B06.RA	³/₄" sq. dr., 200 - 1,000 N·m, 147 - 738 lbf·ft
180244.B08.RA	1" sq. dr., 270 - 1,350 N·m, 200 - 1,000 lbf·ft
181454.RA	1" sq. dr., 400 - 2,000 N·m, 295 - 1,475 lbf·ft
180246.B08.RA	1" sq. dr., 540 - 2,700 N·m, 398 - 1,991 lbf·ft
180250.B08.RA	1" sq. dr., 800 - 4,000 N·m, 590 - 2,950 lbf·ft
180249.B12.RA	1½" sq. dr., 1,400 - 7,000 N·m, 1,030 - 5,200 lbf·ft

Right Angle Gearbox fitted to EBT

LUBRO CONTROL UNITS

Lubro Control Unit, part numbers 16074

Norbar's standard filter, regulator, lubricator unit 16074 features a 100 mm diameter gauge for easy and accurate setting of air pressure with ergonomic placement of air pressure adjustment control. Supplied with 3 metres of robust, steel braided air hose with fittings to connect to PneuTorque® wrenches.

Twin Regulator Lubro Control Unit, part number 16075

The 'Twin Lubro' has the same features as Norbar's standard filter, regulator, lubricator unit but has the benefit of two regulators and a switch that allows quick selection between two air pressure settings. A typical application for this would be a PneuTorque® user wishing to quickly select between two applications requiring different torque settings. For example, this might be controlled torque in the forward direction and maximum torque allowed by the tool in the reverse direction.

11	LUBRO CONTROL UNITS
16074	Lubro Control Unit with 3 m hose
60339	MPa only gauged Lubro Control Unit with 3 m hose
16075	Twin Lubro Control Unit with 3 m hose
See page 127 for Lubro Control Unit spares.	

SOCKET RETAINERS

These socket retaining clips make attaching sockets to square drives easy and quick.

8	SOCKET RETAINING CLIPS
19556	Socket Retaining Clip for ¾" sq. dr. (Yellow) - Pack of 10
19557	Socket Retaining Clip for 1" sq. dr. (Red) - Pack of 10
19558	Socket Retaining Clip for 1½" sq. dr. (Green) - Pack of 10
19559	Socket Retaining Clip for 21/2" sq. dr. (Blue) - Pack of 10

This product is intended for general purpose use at ground level. It is not intended as a solution for socket retention when working at height or where FOD (foreign object damage) could cause a safety and/or commercial risk.

Not recommended for use with impact tools.

DRILCO

CONNECTED TOOLS

CONNECTED TOOLS

	EBT for use with G400 and G400MP	72
	Multi-Port Torque Controller System Global 400MP Series	
	These systems are designed to error proof processes where highly customised passembled. When combined with the EBT customers can ensure correct torque	has been
	achieved at key critical bolting steps of their processes monitored by the Global Global 400MP.	400 or
	to die	
		S I II I
	-	
S. N. S.		
	The state of the s	N.
		11
	4	1

EBT FOR USE WITH G400 AND G400MP

Norbar's highly accurate transducer controlled EBT battery powered torque tool perfectly complements and connects with Sturtevant Richmont's Global 400 series Torque Controller systems via Xbee radio. These systems are designed to error-proof processes where highly customised products are assembled. When combined with the EBT customers can ensure correct torque has been achieved at key critical bolting steps of their processes monitored by the Global 400 or Global 400MP.

EBT is a transducer controlled battery powered torque tool designed for accurately applying torque to threaded fasteners. The unique 'intelligent joint sensing' technology continually measures the joint during tightening and when necessary, employs dynamic braking to avoid torque over-shoot due to motor inertia. Both accuracy and repeatability of $\pm 3\%$ of the setting within the calibrated range.

- Powerful motor coupled with either a single speed or auto two speed gearbox for rapid joint completion times
- Tool is not constrained by power cable or hose, improving safety, convenience and versatility
- OLED display ensures visibility in all conditions
- Clear indication of successful joint application
- 12 user IDs can be downloaded to the tool and results can be stored against individual users
- 20 unique stand-alone targets plus 20 unique work group targets for each work group
- 'Safe to start' button ensures hands are safely positioned at start up
- Quiet with noise levels that do not exceed 79.1dB(A)
- Non-impacting with vibration that do not exceed 2.5m/s²

13	EBT SERIES G400 CONTROLLER COMPATIBLE TOOLS
180357	EBT 800 G400
180453	EBT 1350 G400
180477	EBT 1350-AUT G400
180549	EBT 2700 G400
180573	EBT 2700-AUT G400
180645	EBT 4000 G400
180669	EBT 4000-AUT G400
180858	EBT 800 G400 ST
180906	EBT 1350 G400 ST
180930	EBT 1350-AUT G400 ST
180954	EBT 2700 G400 ST
180978	EBT 2700-AUT G400
181002	EBT 4000 G400
181026	EBT 4000-AUT G400 ST

For more information contact Norbar.

TORQUE CONTROLLER SYSTEM GLOBAL 400 SERIES

Utilise connected wireless tooling to error-proof your processes

The Global 400 is designed to organise workstations where highly customised products are assembled. It can work with 16 primary torque tools, 8 holding tools and an additional 8 I/O tools. It has the capacity for 100 sets of parameters that can be grouped allowing 4 operators to work as a team. These parameters or groups can be formed into jobs containing a fixed build sequence of up to 35 steps. Error-proofs your processes using connected wireless tooling.

- Supports up to 16 Sturtevant Richmont tools as well as the Norbar EvoTorque® Battery Tool
- Works with many protocols and MES systems (EitherNet IP, Open Protocol, Toolsnet, 24 Volt I/O)
- Supports the use of barcode scanners to further error proof your process
- Has the capability for 100 sets of parameters
- 10 pin I/O connector providing discreet I/O capabilities

System Capabilities:

- 6 inch diagonal, back-lit colour LCD display
- USB-A connector for use with barcode scanner, or updating firmware and saving files
- RS-232 D-Sub9 Connector for use with serial barcode scanner or serial printer
- Key switch for programming access, 21 function keys for programming
- Adjustable and programmable beeper for audio communication

MULTI-PORT TORQUE CONTROLLER SYSTEM GLOBAL 400MP SERIES

Designed to organise multiple workstations where highly customised products are assembled

The Global 400mp distributes all the power, flexibility, ease and capabilities of the Global 400 over 4 individual network interfaces. The result? Up to 4 operators can work independently and don't even have to be in the same work cell.

4 separate network interfaces and Global 400mp architecture eliminate the need for groups in order to support simultaneous work.

Parameters are formed directly into jobs. With 4 network interfaces each operator can work on their own job, independent of the other operators.

The Global 400mp can be applied to assembly, repair and maintenance operations.

- Has the ability to work with 4 different stations/operators simultaneously through multiple ports
- Supports up to 16 Sturtevant Richmont tools as well as the Norbar EvoTorque® Battery Tool
- Works with many protocols and MES systems (EitherNet IP, Open Protocol, Toolsnet, 24 Volt I/O)
- Supports the use of barcode scanners to further error proof your process
- Has the capability for 100 sets of parameters
- 10 pin I/O connector providing discreet I/O capabilities